Expanders are counterexamples to the $\ell^p$ coarse Baum–Connes conjecture
نویسندگان
چکیده
We consider an $\ell^p$ coarse Baum-Connes assembly map for $1<p<\infty$, and show that it is not surjective expanders arising from residually finite hyperbolic groups.
منابع مشابه
Counterexamples to the uniformity conjecture
The Exact Geometric Computing approach requires a zero test for numbers which are built up using standard operations starting with the natural numbers. The uniformity conjecture, part of an attempt to solve this problem, postulates a simple linear relationship between the syntactic length of expressions built up from the natural numbers using field operations, radicals and exponentials and loga...
متن کاملCounterexamples to Kalai's conjecture C
1 The First Counterexample Let ρ be a quantum state on the space (C) of n qudits (d-dimensional quantum systems). Denote by ρS the reduced state of ρ onto some subset S of the qudits. We partition S further into two nonempty subsets of qudits A and A := S\A (thus S must contain at least two qudits). Denote by Sep(A) the convex set of quantum states which are bipartite separable on S across the ...
متن کاملNew Counterexamples to Knaster’s Conjecture
Given a continuous map f : Sn−1 → Rm and n − m + 1 points p1, . . . , pn−m+1 ∈ Sn−1, does there exist a rotation % ∈ SO(n) such that f(%(p1)) = . . . = f(%(pn−m+1))? We give a negative answer to this question for m = 1 if n ∈ {61, 63, 65} or n ≥ 67 and for m = 2 if n ≥ 5.
متن کاملCounterexamples to the List Square Coloring Conjecture
A graph G is called chromatic-choosable if χl(G) = χ(G). It is an interesting problem to find graphs that are chromatic-choosable. There are several famous conjectures that some classes of graphs are chromatic-choosable including the List Coloring Conjecture, which states that any line graph is chromatic-choosable. The square G of a graph G is the graph defined on V (G) such that two vertices u...
متن کاملGeneralized Counterexamples to the Seifert Conjecture
Using the theory of plugs and the self-insertion construction due to the second author, we prove that a foliation of any codimension of any manifold can be modified in a real analytic or piecewise-linear fashion so that all minimal sets have codimension 1. In particular, the 3-sphere S has a real analytic dynamical system such that all limit sets are 2-dimensional. We also prove that a 1-dimens...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Noncommutative Geometry
سال: 2023
ISSN: ['1661-6960', '1661-6952']
DOI: https://doi.org/10.4171/jncg/498